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Our results concern long time limit properties of a deterministic dynamics that
is common for a wide class of processes that have been studied so far dur-
ing at least last two decades. The most widely known process from this class
is a cellular automaton that acquired number 184 in the classification of
S. Wolfram. This CA 184 is being intensively used to model vehicular traf-
fic. However, our results are mainly derived with help of another process that
offers a helpful insight into the studied dynamics, it is a so-called Ballistic
Annihilation Model (abbreviated by BA). BA is a model for chemical reaction
A+B → inert. In BA, A and B-type particles move in opposite directions with
velocities 1 and −1, respectively, and annihilate upon collisions. Certain results
concerning BA and CA 184 are also formulated in terms of another process
known as a Model of Surface Growth (SG, for short); the surface shape in this
process behaves as the integrated profile of particle distribution in CA 184.

Our results are as follows. First, we characterize the invariant measures
of the dynamics in interest. The bulk of our effort is devoted to the character-
ization of those of them that are not translation invariant; we call them phase
separating invariant measures. In the case of BA, such measures are concen-
trated on the configurations consisting of two converging infinite blocks of (not
necessarily adjacent) particles. In the case of CA 184, a phase separating mea-
sure describes the transition from free traffic phase to jammed phase. We also
analyze domains of attraction of invariant measures and rates of convergence
to them. This analysis then allows us to express the long time limit of parti-
cle current in CA 184 as a function of certain characteristics of its initial dis-
tribution, when it is translation invariant. This expression has been used in a
companion paper (V. Belitsky, J. Krug, E. J. Neves and G. Schütz, A cellular
automaton model for two-lane traffic, J. Stat. phys. 103(5/6):945–971 (2001))
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to show the enhancement of cars’ current caused by the possibility of lane
changes in a model of traffic on a two-lane highway that was created by putt-
ing two CA 184’s in parallel. Our other results concern hydrodynamic limits of
BA and CA 184. We prove that if the integrated profile of initial particle con-
figuration of BA or CA 184 converges, as n → ∞, to some stochastic process
W(x), x ∈ R, when being re-scaled by n−1 along x-axis and by c−1

n along y-
axis for some sequence cn, then the integrated profile of particle configuration
at time n under the same re-scaling, will converge, as time → ∞, to the local
moving minimum of the process W(·), that is, to the process Wmin(·) defined by
Wmin(x) :=min{W(y) : x −1�y �x +1}. This hydrodynamic limit is then inter-
preted in terms of the limiting shape of surface in SG.

KEY WORDS: Cellular automata; Wolfram’s automaton 184; ballistic annihi-
lation; annihilating deterministic motions; surface growth; invariant measures;
phase separating measures; hydrodynamic limits; rate of convergence to equilib-
rium; traffic flow models; flux of particles (cars); current of particles (cars).

1. INTRODUCTION

We study long time limit properties of a particular deterministic dynam-
ics. This dynamics gave rise to a class of processes, called cellular
automata, that have been studied so far in mathematical and physical
literature, either separately or together. Three processes from this class
“represent” the dynamics in our paper. Their constructions will be given
in Section 2, while here we present only the motivation for our choice of
these representatives. The first one of them has appeared in mathematical
literature as a model for ballistic annihilation process; we thus call it BA.
Besides of an independent interest in BA and its applications, the reason
for its choice is in that it offers a very convenient insight into the stud-
ied dynamics: a reader will see that BA plays a central role in majority of
our proofs. Our second “representative” is known under the name Cellu-
lar Automaton 184; we call it shortly by CA 184. It is being widely used
for modeling traffic flow, which is the main reason for our interest in it.
In particular, its properties studied in Section 5.3 were recently employed
by us to construct and analyze a model of cars’ traffic on a two-lane high-
way (see ref. 2). The third “representative” is the process known as Surface
Growth Model; we call it SG. Its behavior is equivalent to that of the inte-
grated profile of particle configurations of CA 184, and thus, SG appears
naturally in the study of the hydrodynamic limit of CA 184 (see Section 4).

Our results are as follows: we characterize the invariant measures of
the dynamics in interest (Section 3), and analyze the domain of attraction
of the invariant measures and the rate of convergence to them (Section 5),
and we also analyze hydrodynamic limits of particle distributions in BA
and in CA 184 and the related limiting behavior of SG (Section 4).
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We must note that certain ideas from our proofs may not be original,
since the properties and applications of the studied dynamics have been
investigated during at least last two decades (appropriate references will be
given in the course of presentation). For example, our description of the
translation invariant measures that are invariant measures for BA and for
CA 184 may be derived by the tools that have appeared in previous studies
(of Blank or of Gray and Griffeath, for example, or even an earlier work
of Krug and Spohn); the same may be said in respect to some aspects
addressed by us in Section 5. What is essentially novel in our results are:
the description of the non-translation invariant measures that are invari-
ant for the dynamics, and the identification of hydrodynamic limits of BA
and CA 184. Also we believe we are original in our approach to analysis
of the limit particle current in CA 184; the ideas of this approach were
employed in ref. 2 mentioned above.

2. DEFINITIONS

In this section, we recall the constructions of the processes studies
and give a brief historical note in respect to each one of them. As we
have stated above, these processes are constructed on basis of a common
dynamics. This fact is made precise by Lemmas 1 and 2 and Remark 1.
Figure 1 illustrates the constructions and the lemmas.

2.1. Cellular Automaton 184

Cellular Automaton 184 (abbreviated by CA 184) is a discrete time
process with state space {0,1}Z. Let, us usual, η(x) denote the value of η∈
{0,1}Z at the coordinate x ∈ Z. The CA 184 evolution rule acquires then
the following definition: if η∈{0,1}Z is the state at an arbitrarily fixed time
n then η̂∈{0,1}Z defined by

η̂(x) :=





1, if η(x)=η(x +1)=1
1, if η(x)=1−η(x −1)=0
0 otherwise

∀ x ∈Z (1)

is declared to be the state at time n+1. Let the dynamics of CA 184 be denoted
by the operator C : {0,1}Z →{0,1}Z such that Cη= η̂. Thus, formally, refers to
a sequence {ηn, n∈Z} such that ηn ∈{0,1}Z and ηn+1 =Cηn∀n.

CA 184 models deterministic motions of identical particles on Z that
obey the following rules: there may be at most one particle per site, and at
each integer time each particle inquires whether the site of Z to the right
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Fig. 1. Evolution of CA 184, BA and SG, construction of counting profiles for CA 184
and BA, and illustration of Lemmas 1 and 2.

In the bottom lines of figures (a) and (b), we present portion of configurations of
CA 184 particles on Z, where a site occupied by a particle is marked by × and a vacant site
is marked by ◦. The configuration in (b) is obtained from that in (a) via the dynamics of
CA 184. The upper lines in (a) and (b) present portion of configurations of BA particles on
Z, where a site containing negative (resp., positive) A-particle is presented by � (resp., �),
and an empty site is presented by ◦. The configuration in (b) is obtained from that in (a) via
the dynamics of BA. The dotted curves in (a) and (b) present portions of functions from the
space R. The function from (b) is obtained from the function in (a) via the dynamics of SG.

In both (a) and (b), the configuration of BA particles relates to that of CA 184 ones
via (4); the preservation of this relation in the passage from (a) to (b) illustrates the asser-
tion of Lemma 1. On both (a) and (b), the dotted function relates to the configuration of
CA 184 particles via (5), the preservation of this relation in the passage from (a) to (b) illus-
trates Lemma 2.

Solid curves in (a) and (b) are integrated profiles for the respective configurations of
BA particles in the sense of (45). Dotted curves in (a) and (b) are integrated profiles for the
respective configuration of CA 184 particles in the sense of (46). The figure illustrates the
fact that the integrated profiles do not diverge one from another by more than 1, if both pass
through (0,0) and if they correspond to particle configurations that are related via (4); this
fact is a cornerstone for the proof of Theorem 4.

of its current position is empty of another particle, and if it is so then it
instantaneously jumps to this site. These rules follow immediately from (1),
if one interprets η(x) = 1/0 as “presence/absence of a particle at the site
x ∈Z in η”.
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The number “184” in the name of this process is due to the classifica-
tion of Wolfram(21) (see also(22)) of a class of cellular automata. CA 184 has
been employed for different needs. For example, in ref. 6 it is shown to be
able to classify densities in binary strings. However, the most popular use
of CA 184 and its divers modifications is for modeling vehicular flows; see
in respect(2,12,19,20) (and the work of M. Blank submitted for publication
in this journal in 2002) and references in the first two for the most recent
achievements in this direction. CA 184 has two “stochastic” counterparts.
One is the totally asymmetric simple exclusion process (TASEP). The sec-
ond one has the same evolution rule as CA 184 but with “a noise” that
is introduced by setting that each particle that can jump will do so with
probability p independently of anything else; we thus call this process “
with noise” (CA&N). The invariant measures for TASEP and CA&N have
been characterized in refs. 18 and 23, respectively (curiously, only the case
p�1/2 was studied in ref. 23, but we believe that a similar technique allows
to extend the results to any p) but the approach employed there (which is a
stochastic coupling) does not apply to CA 184 (because of the lack of sto-
chasticity in its dynamics). As we shall see, the set of the invariant measures
for CA 184 is quite different from those for TASEP and for CA&N.

2.2. The Annihilating Particle System

The annihilating particle system studied here can be also found in the
literature under the names Ballistic Annihilation (abbreviated by BA) and
Annihilating Deterministic Motion. We shall adopt here the name BA. Let
ζ(x) denote the value of ζ ∈ {−1,0,1}Z at the coordinate x ∈ Z. BA is a
discrete time process with state space {−1,0,1}Z and the following dynam-
ics: if ζ ∈ {−1,0,1}Z is the state at an arbitrarily fixed time n then ζ̂ ∈
{−1,0,1}Z defined by

ζ̂ (x)=






1, if ζ(x −1)=1 and neither ζ(x)=−1 nor both
ζ(x)=0, ζ(x +1)=−1

−1, if ζ(x +1)=−1 and neither ζ(x)=1 nor both
ζ(x)=0, ζ(x −1)=1

0, otherwise

∀x ∈Z (2)

is declared to be the state at time n + 1. The dynamics of BA will
be denoted by the operator A : {−1,0,1}Z → {−1,0,1}Z such that Aζ =
ζ̂ . Thus, formally, BA refers to a sequence {ζn, n ∈ Z} such that ζn ∈
{−1,0,1}Z and ζn+1 =Aζn∀n.

BA may be also interpreted in terms of particles. We shall call
them A-particles in order to distinguish them from those that move in
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CA 184. The value 0,1,−1 of ζ(x) is interpreted by saying that site x ∈Z

is respectively, free of an A-particle, contains an A-particle with velocity
1, and contains an A-particle with velocity −1. In the terms of particles,
the dynamics of BA acquires the following interpretation: each A-particle
moves along R (exactly to state, along the line which contains the lattice
Z on which the particles sit at integer times) with its velocity (going in
the direction to −∞ (+∞), if the velocity is negative (positive, resp.)) and
annihilates when meets another A-particle; upon annihilation both A-par-
ticles disappear from the system forever.

BA is a natural model for the chemical reaction A+B → inert. For
an extensive list of references in this respect, we refer a reader to.(7) A
modification of BA in which the set of possible particle velocities is larger
than {−1,1} has been considered in the works.(4,15) We also mention here
the work(8) which studies a coalescing particle system employing a very
simple relation between it and BA. This coalescing particle system is a
process in which particles move as in BA but coalesce instead of annihi-
late, upon collision; coalesced particles choose then a new velocity from
{−1,1} with equal probabilities.

2.3. The Surface Growth Model

The surface growth model (abbreviated by SG) is a discrete time pro-
cess with state space R, the space of piecewise linear functions (from R to
R) that have the slope of either 45◦ or 315◦ between any two consequent
integer abscissas, and that attain integer value at each integer abscissa (see
Fig. 1). Its dynamics is as follows. If f (·)∈R is the state at an arbitrarily
fixed time n then f̂ (·)∈R defined by

f̂ (i) :=
{

f (i)+2, if f (i)=f (i +1)−1=f (i −1)−1
f (i), otherwise ∀i ∈Z (3)

is declared to be the SG state at time n + 1 (certainly, to define f̂ ∈ R,
it is sufficient to determine its values at Z). The dynamics of SG will be
denoted by the operator S : R→R such that Sf = f̂ . Thus, formally, SG
refers to a sequence {fn(·), n∈Z} such that fn ∈R and fn+1(·)=Sfn(·)∀n.

Imagine f (·) ∈ R as the surface of a two-dimensional solid above
some reference horizontal line. Imagine then that diamond shaped parti-
cles of the side length

√
2 are thrown on this solid, and those of them that

fall in local minima of f (·) stick to the solid while others disappear. The
surface of the new solid will be then what we have defined as f̂ (·). This
justifies the name given to the process. We observe that this process is also
known under the name polynuclear growth model (PNG) and one of its



Invariant Measures and Convergence Properties 595

modifications was studied almost 30 years ago in ref. 5. The ref. 17 con-
tains a list of works in which this process has been addressed.

2.4. Equivalence of the Dynamics

Lemmas 1 and 2 and Remark 1 in this section give the precise mean-
ing to equivalence of the dynamics of BA, CA 184 and SG. We note that
this equivalence has been known since at least the work.(16) The asser-
tions are illustrated in Fig. 1. Their proofs are straightforward and thus,
omitted. We recall that the operators A,C and S, used below, denote the
dynamics of BA, CA 184 and SG, respectively.

Lemma 1. (Relation of CA 184 to BA). Define T184,BA : {0,1}Z →
{−1,0,1}Z by

(T184,BAη)(i)=1−η(i)−η(i −1), i ∈Z (4)

Let η, η̂ ∈ {0,1}Z and ζ, ζ̂ ∈ {−1,0,1}Z be such that T184,BA(η) = ζ and
T184,BA(η̂)= ζ̂ . Then, η̂=Cη if and only if ζ̂ =Aζ .

Lemma 2. (Relation of SG to CA 184). Define TSG,184 :R→{0,1}Z by

(
TSG,184f

)
(i)=

{
0, if f (i)−f (i −1)=1
1, if f (i)−f (i −1)=−1 ∀i ∈Z (5)

Let f, f̂ ∈R and η, η̂ ∈ {0,1}Z be such that TSG,184f =η and TSG,184f̂ = η̂.
Then, η̂ = Cη if and only if the functions f̂ and Sf have the same shape,
that is, if and only if (Sf )(x)− (Sf )(0)= f̂ (x)− f̂ (0), for all x ∈R.

Remark 1. Say that f, g ∈R have the same shape, if f (x)− f (0)=
g(x)−g(0) for all x ∈R, and separate R in classes of equivalence by postu-
lating that two functions with the same shape belong to the same class. It
is easy to check that TSG,184 induces a bijection between the state space of
CA 184 and the classes of equivalence. This bijection and Lemma 2 allow
one to reformulate any result about the CA 184 dynamics in terms of the
SG dynamics on the classes of equivalence. A harder problem to which we
have no generic treatment is to deduce how a single function is modified in
SG from analysis of the relating CA 184 or BA. Let us give an example.
Let f0 be a random function such that f0(0)=0 and {f0(i)−f0(i −1), i ∈
Z} are i.i.d. Bernoulli 1/2 random variables. According to Lemmas 1 and
2, the distribution of A-particles relating to f0 is ζ0 = T184,BA ◦ TSG,184f0.
Consider BA starting from this distribution. Using the methods developed
in 1, it is possible to deduce approximately its distribution at an arbitrary
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time n. This however, is not sufficient to deduce the distribution of fn. The
reason is that on one hand, the distribution of BA at time n reveals solely
the distribution of the shape of fn (via T −1

SG,184 ◦ T −1
184,BA) but not of the

height of fn (by which we mean fn(0)), and, on the other hand, we do
not have a complete control on the relation between the shape change sub-
process and the height growth sub-process of SG. Thus, when we formu-
late a result about SG {fn, n∈Z} deducing it from a result about BA, we
resort to an implicit random variable that “shifts a function to where it
is needed” without specifying the “needed” quantity. An example of how
we do this, is provided by Theorem 5. In a similar way, one could obtain
counterparts of Theorems 2, 6 and 7 for the SG process.

3. INVARIANT MEASURES

3.1. The set of the invariant measures for BA

The set of the invariant measures for BA is characterized in Theorem 1 of
this section, where by “characterize” we mean that the theorem provides con-
venient tools that allow one to construct and to investigate measures from this
set; in Remarks 2–4 we shall specify why we think these tools are convenient.
As one may see, the bulk of the proof is devoted to treat the phase separating
measures, i.e., the measures that are supported by the configuration set �s to
be defined below in (6). The set of phase separating measures that are invariant
for BA is characterized via establishing that it is isomorphic to a particular set
of almost stationary real valued processes. We precede the theorem formula-
tion by constructions of the isomorphism (F ∗

0 ) and the process distribution set
(Eσ ). Figure 2 illustrates these constructions.

Elements from {−1,0,1}Z will be called configurations, and their val-
ues at sites of Z will be interpreted in terms of particles as indicated in
Section 2. An A-particle (from BA) whose velocity is +1 (resp., −1) will
be called positive (resp., negative). A-particles will be called simply parti-
cles, when this does not create a confusion.

Two particles will be called consecutive, if there are no any other particle
between them. A pair of consecutive A-particles is said to be converging (resp.,
diverging), if the leftmost (resp., rightmost) particle of the pair is positive and
the rightmost (resp., leftmost) one is negative. Note that the terms converging
and diverging apply solely to a pair of consecutive particles. We introduce

�s := {ζ ∈{−1,0,1}Z : ζ is a phase separating configuration, i.e.
(i) there is only one pair of (consecutive) converging particles;
(ii) both the number of positive particles in ζ

and the number of negative ones are infinite}
(6)
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Fig. 2. The portion of e ≡ {(ei , i), i ∈ 1
2 Z} from E′ contained in time interval [n,n + 7] is

represented in the figure by zig-zag line. All kinks of this portion of e are circled. Two rays
are stemmed from each kink, one goes north-east and the other one north-west; the rays are
indicated by dot lines (we note that the lowest dot-line comes from some kink below the level
n+ 7). At the intersections of these rays with horizontal lines, we put A-particles: a positive
particle (�), if the ray involved goes north-east, and a negative particle (�), if it goes north-
west. The configuration of particles on the line at time-level n is what we have denoted by
Fn(e) in the proof of Theorem 1.

Let us interpret �s and �s in the figure as a portion of the “history” of BA, and let us
exhibit how the second class particle would move in this portion of BA. According to the
rules (i)–(iii) from the proof of Theorem 1, the second class particle moves together with
particle a during time interval [n,n+ 1

2 ], then, at time n+ 1
2 , when a is annihilated by a′, the

second class particle moves together with the ghost of a′ (this ghost is an inert particle that
moves after time n+ 1

2 exactly as a′ would moved, if it had not been annihilated at this time)
until it meets particle b; from this moment till the annihilation time of b, the second class
particle moves together with it, and starting from time n+4, it moves together with the ghost
of b′; and so forth...

The figure shows clearly that if we construct BA process from e∈E′ then the second class
particle trajectory in this BA will coincide with e. This is the cornerstone of the bijective
relation between trajectories of the second class particle and “histories” of BA. This bijection
in turn, is the cornerstone of assertion (b) of Theorem 1.

Let us finally illustrate that the mentioned above bijective relation would be broken if we
index elements from E′ by the time set Z rather than by 1

2 Z. Take the portion of the zig-zag
line between the levels n+4 and n+5 and reflect around the vertical line that links the kinks
at n+4 and n+5. Observe that although the new zig-zag line, e′, coincides with the old one,
e, at integer “times” . . . , n, n+1, . . . , n+7, . . . , nevertheless the kinks of e at times n+4 and
n+5 are not present in e′. Consequently, e and e′ would generate different BA histories.

Note that if ζ ∈�s then it contains only positive (resp., negative) particles
to the left (resp., right) of the middle point between the (unique!) pair of
its converging particles. This structure motivated the name we have given
to �s .
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For brevity sake, we introduce symbol

1
2 Z :=Z∪ (

Z+ 1
2

)
(7)

and introduce then a particular set of numeric sequences indexed by 1
2 Z:

E :={
e={

ei, i ∈ 1
2 Z

}
: ei ∈Z ∀i ∈Z, and ei − e

i+ 1
2
∈{− 1

2 ,
1
2 } ∀ i ∈ 1

2 Z } (8)

By geometric representation of e ∈ E we shall call the set of points
{(ei, i), i ∈ 1

2 Z} in Euclidean plane whose horizontal axis corresponds to
the first coordinate and its unit vector points rightwards, and whose ver-
tical axis corresponds to the second coordinate and its unit vector points
downwards; the first coordinate will be interpreted as position and the sec-
ond as time (in the interacting particle system field, there is a tradition
to orient the time axis downwards). We say that e∈E has a kink at time
t ∈ 1

2 Z, if e
t− 1

2
>et and e

t+ 1
2
>et , and we define then

E′ :={ e∈E : e has infinitely many kinks after any time t} (9)

Note that if t and t ′ are two consecutive kink times of an e ∈ E and if
(et , t) and (et ′ , t

′) are given, then there is a unique choice for the values of
eu at t �u� t ′; this fact follows easily from the geometric representation of
e and implies the following property that will be used in our arguments:

any e∈E′ is uniquely determined by the time

and space coordinates of all its kinks (10)

We construct a mapping F0 : E′ →{−1,0,1}Z in the following way. Given
e∈E′, we draw its geometric representation in Euclidean plane, and then,
from each kink point (et , t) whose time coordinate is strictly (!) greater
than 0, we emerge two rays on this plane, one going north-west and the
other one going north-east. We then postulate that the particle configura-
tion F0(e), that results from the application of F0 to e, contains negative
(resp., positive) A-particle at k ∈ Z, if and only if (0, k) is an intersection
point of the horizontal axis with one of the rays that go north-east (resp.,
north-west) (see Fig. 2 for illustration).

Let us now introduce “the time shift of E by 1” as the mapping

σ : E →E defined by (σ (e))n = en−1 ∀n∈ 1
2 Z (11)
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Let us then denote by Eσ the set of the measures on E′ that are invari-
ant with respect to the time shift by 1 (note, by 1 and not by 1

2 ), that is,
ν ∈ Eσ iff ν

(
σ−1U

) = ν
(
U

)
for any set U ⊂ E′. For a measure ν ∈ Eσ , let

F ∗
0 (ν) denote the measure on �s such that

F ∗
0 (ν) (U)=ν

(
F−1

0 (U)
)

for every cylinder U ⊆�s ⊂{−1,0,1}Z (12)

To see that F ∗
0 (ν) is well defined by (12), fix arbitrarily a natural number

k and 2k integer numbers �k <�k−1 < · · ·<�1 <r1 <r2 < · · ·<rk, and con-
sider the set U composed of those ζ ’s from �s that have positive particles
at the fixed �’s and negative particles at the fixed r’s, and no other parti-
cles in between �k and rk. It is then follows from our construction of F0
that F−1

0 (U) consists of those e’s that contain k kinks in the time interval
[0, (rk − �k)/2] whose positions are rigidly determined by the requirement
that the i-th kink should generate the particles at the sites �i and ri . Then,
ν(F−1

0 (U)) is well defined. The above considerations imply easily that (12)
is well posed for any cylinder U , and then that F ∗

0 (ν) is a measure on �s .

Theorem 1. (Characterization of the invariant measures for BA).
Let φ denote the empty configuration, i.e., the configuration that has no
particles, and let δφ denote the measure concentrated on φ. Let IBA denote
the set of the measures that are invariant for BA.

(a) A measure µ on {−1,0,1}Z is invariant for BA if and only if

µ=α1µ1 +α2µ2 +α3µ3 +α4δφ (13)

for some non-negative real numbers α1, α2, α3, α4 such that α1 +α2 +α3 +
α4 = 1, and some measures µ1,µ2,µ3 from the respective sets PBA+,τ , PBA−,τ

and PBA
s ∩ IBA described below. The expansion (13) is unique.

PBA+,τ and PBA−,τ consist of the measures that are translation invariant,
i.e., invariant with respect to the “the space shift of {−1,0,1}Z by 1” oper-
ator

τ : {−1,0,1}Z →{−1,0,1}Z defined by (τ (ζ ))(x)= ζ(x −1) ∀x ∈Z (14)

and are concentrated on the respective configuration sets

�+ :={ζ ∈{−1,0,1}Z : ζ �=φ, and ζ has no negative particles}
�− :={ζ ∈{−1,0,1}Z : ζ �=φ, and ζ has no positive particles} (15)

The set PBA
s consists of the measures concentrated on the configuration

set �s defined in (6). It does not contain translation invariant measures.
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(b) The transformation F ∗
0 defined in (12) is a one-to-one mapping

between Eσ and PBA
s ∩ IBA, the subset of PBA

s consisting of the measures
invariant for BA.

Remark 2. Note that the construction of the measure set PBA+,τ ∪ δφ

implies directly that it is equivalent to the set of stationary processes with
the time set Z and the state space {0,1}. Similarly, PBA−,τ ∪ δφ is equiva-
lent to the set of stationary processes with the time set Z and the state
space {0,−1}. Note also that the measure set Eσ may be viewed as a set of
“almost stationary” processes whose trajectories belong to the set E′ that
has been defined in (9); the proviso “almost” is needed since the processes
are indexed by the time set 1

2 Z, but are invariant with respect to the time
shift by 1, and not by 1/2. Thus, we say that Theorem 1 characterizes the
invariant measures for BA since it allows one to construct and to study
these measures with help of the theory of stationary processes, which is a
well developed field.

Remark 3. The reader will see that the fact that F ∗
0 is a bijection

is proved with help of so-called second class particle. Methods that use
second class particle showed to be extremely effective in studying vari-
ous interacting particle systems (see review paper 9), and in particular, has
been used together with cellular automaton in ref. 10. The ideas employed
here are illustrated in Fig. 2.

Remark 4. It follows from the structure of phase separating config-
urations (defined in (6)) that if a measure µ is supported by �s then it
may be identified with collection of distribution functions (F, {Fr,x, x ∈
1
2 Z}, {F�,x, x ∈ 1

2 Z}), where F is a distribution on 1
2 Z that determines the

position of the middle point between the converging particles, and Fr,x

and F�,x determine the positions of negative and positive particles respec-
tively, to the right and to the left of x, given the middle point position is
x. We tried to characterize the measure set PBA

s ∩ IBA with the help this
identification, but the results we obtained were less satisfactory than those
obtained by the second class particle method, when we compared them
from the point of view of their applicability for constructing and analyzing
the measures from PBA

s ∩ IBA.

Proof of Theorem 1(a). Recall that IBA denotes the set of the
invariant measures for BA. Recall the definitions (14) and (15) of τ and
of �+, and recall that the dynamics of BA is denoted by A. It may be
verified straightforwardly that

if ζ ∈�+ then τ(ζ )=A(ζ ) (16)
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It follows then easily from (16) that if µ1 ∈ PBA+,τ then µ1 ∈ IBA. Analo-
gously, if µ2 ∈ PBA−,τ then µ2 ∈ IBA. Since, according to the conditions of
Theorem 1, µ3 from (13) is picked from a subset of IBA and since, obvi-
ously, δφ ∈ IBA then µ defined by (13) must belong to IBA. This completes
the proof of the “if” part of the theorem. The “only if” part is more diffi-
cult. It will be proved with the aid of the following.

Lemma 3. Let ζ0 ∈{−1,0,1}Z and m∈N be arbitrarily fixed. Let ζm

denote the configuration of particles in the BA at time m, starting from ζ0,
i.e., ζm =Amζ0. Take any pair of diverging particles in ζm (the term diverg-
ing has been defined in the beginning of the section). Then the distance
between them is not less than 2m+1.

Proof of Lemma 3. Find any pair of diverging particles in ζm.
Observe that the initial position (i.e., in ζ0) of the negative particle of this
pair must be to the left of that of the positive one, because if not then
these particle would have annihilated each other by time m. The assertion
follows from this observation and from the fact that these particles were
diverging with velocity 2 during the time interval [0,m].

Continuation of the Proof of Theorem 1(a). Lemma 3 provides that if
µ∈ IBA then µ gives weight zero to any configuration that has at least one
pair of diverging particles. Thus, such µ must be concentrated on �+ ∪
�− ∪�s ∪ {φ}. Note however, that the dynamics A does not mix the sets
�+, �−�s and {φ}, that is, there is no a configuration ζ from one of these
sets such that Aζ belongs to another one (note that it is the condition (ii)
from (6) that guarantees that the set A(�s) has no intersection with �+ ∪
�− ∪{φ}). Thus, the expansion (13) follows.

That the expansion (13) is unique follows from the fact that any two
of the sets �+, �−, �s , {φ} have empty intersection.

The statement that PBA
s does not contain translation invariant mea-

sures can be established by the following reasoning: Let pos(ζ ) denote the
position of the positive particle of the unique pair of converging parti-
cles from ζ ∈�s . Observe that pos(τζ )=pos(ζ )+1 (τ is from (14)). Thus,
if µ ∈ PBA

s and if µ is translation invariant then µ{ζ ∈ �s : pos(ζ ) = i}
acquires the same value for each i ∈Z. Since this is impossible, the state-
ment is proved.

Proof of Theorem 1(b). Principal ideas of the proof are illustrated
by Fig. 2.

Recall, from the text before the formulation of Theorem 1, the con-
struction of mapping F0 on set E′. We now state that this construction
implies that for any e ∈ E′, it holds that: (a) among the rays that stem
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from all kinks of e, no two can intersect line y =0 at the same point; (b)
the space coordinate of the intersection point of any ray with line y = 0
is an integer number; (c) any kink creates a pair of particles such that
the left-most (resp., right-most) of them is positive (resp., negative); (d) if
t1 < t2 are two kink times then the particles created by kink (et (1), t1) lie
in the interval delimited by the particles created by kink (et (2), t2); (e) the
particles created by the same kink will annihilate each other in BA that
starts from F0(e). The statements (a)–(d) follow via direct geometric anal-
ysis from the definition of F0 and the property that ei −e

i+ 1
2
=± 1

2 , for all
i ∈ 1

2 Z. The statement (e) follows from (c) and (d). Combining statements
(a)–(d) with the fact that e∈E′ has infinitely many kinks after time 0 (as
the definition (9) assures), we conclude that F0(e)∈�s for any e∈E′.

For each n∈Z, we define mapping Fn on set E′ in the same way as F0
has been, but for line y =n in the place of y =0. By the argument applied
above to F0, we get that

Fn : E′ →�s ∀n∈Z (17)

Our next objective is to establish the relation

Fn+1(e)=A(Fn(e)) ∀n∈Z and ∀e∈E′ (18)

which we prove below for n=0; for other n, the proof is analogous.
From the construction of F0 and F1, we get that a kink of e creates

a pair of particles in F0(e) and does not create any particle in F1(e), if
and only if the time coordinate of this kink is either 1/2 or 1. In any case,
the distance between the pair of particles from F0(e) that are created by
such a kink is not greater than 1, and thus, due to the property (e), they
will have annihilated one another by time 1, and consequently, they are
not present in A(F0(e)). Consider now an arbitrary kink of e whose time-
coordinate is larger than 1, and consider the pairs of particles in F0(e) and
in F1(e) that are created by this kink. By the construction, the position
of the positive (resp., negative) particle of the pair in F0(e) is by 1 to the
right (resp., left) of the position of that in F1(e). Also, by the construc-
tion, the distance between particles in F0(e) is greater than 1. Combining
these conclusions with (e), we get that the positions of the considered par-
ticles in A(F0(e)) coincide with the positions of the considered particles in
F1(e). Since we have proved (in (c) above) that each kink creates a unique
pair of particles, and since there are no other particles rather than those
created by kinks, then F1(e)=A(F0(e)) follows.
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Using the mappings Fn,n∈Z, we now define

F(e) := (
. . . , F−1(e),F0(e),F1(e), . . .

) ∀e∈E′ (19)

Eqs. (17) and (18) imply that the mapping F defined by (19) maps E′ into
�s ⊂�Z

s , where

�s :={ω= (. . . ,ω−1,ω0,ω1, . . . ) ≡ {ωi}i∈Z : both ωn ∈�s and ωn+1

= Aωn ∀n∈Z} (20)

Note that, according to definitions, we can interpret a sequence ω from �s

as a BA process. This interpretation will be employed below in our con-
structions.

The next step in our proof is to construct mapping G : �s →E′ and
to show then that it is inverse to F .

Let ω∈�s be arbitrarily fixed. We transform the sequence ω={ωi}i∈Z

in the sequence ω̂ = {ω̂n}n∈ 1
2 Z

in the following manner: for each n ∈ Z,
we define ω̂n := ωn, and we define ω̂

n+ 1
2

as the configuration of A-par-
ticles in BA starting from ωn after time 1/2 has passed. (Note that the
interpretation of the BA dynamics given in Section 2.2 allows one to
determine uniquely the particle that are present at any given time in BA,
starting from any given configuration, as well as the positions and veloc-
ities of these particles.) According to our construction, we can interpret
ω̂ as BA process in which particle positions and velocities are recorded
at times from the set 1

2 Z. This interpretation of ω̂ will be used below to
define the second class particle.

We add to the process ω̂ a new particle called the second class parti-
cle whose position is determined by the rules (i)–(iii) specified below (see
Figure 2 for an illustration). (i) It is an extra particle that does not affect
the evolution of other particles and never disappears. (ii) It moves with
velocity +1 or −1 along the same R on which the process’ A-particles
move. Its velocity may changes instantaneously according to the following
rules: (ii-a) when, while going with velocity +1, the second class particle
meets a negative particle it changes its velocity to −1 and starts to escort
the met particle; (ii-b) at the time the escorted particle is annihilated, the
second class particle changes its velocity to +1. (iii) If two particles anni-
hilate at a time n∈ 1

2 Z then at this time, the second class particle is at the
annihilation point and changes its velocity from −1 to +1.

We observe that if k ∈ 1
2 Z is an annihilation time in ω̂ (by which

we mean that two particles of ω̂ annihilate at time k) then we know
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(from the particle positions in ω̂
k− 1

2
) where this annihilation occurs, and

consequently, rule (iii) allows us to define uniquely the second class par-
ticle position at time k in the process ω̂. But once the second class par-
ticle position in ω̂ is determined for some time k, the rule (ii) allows us
to determine its position in ω̂ for any other time. Thus, ω̂ and any its
annihilation time k determine uniquely the second class particle trajectory.
We now want to prove that this trajectory will be the same, if we take
another annihilation time. So, we take the same ω̂ and the annihilation
time k′ which is the immediate successor of k (i.e., no any annihilations
in the time interval (k, k′)). We consider two second class particle trajec-
tories: one determined by ω̂ and k and another one determined by ω̂ and
k′. It is easy to check that rules (iii) obliges the former trajectory to pass
through the annihilation point at time k′, and also obliges the latter to
pass through the annihilation point at time k. It is also easy to check that
then rule (ii) obliges them to coincide before time k, after time k′, as well
as within the time interval (k, k′). Thus, the second class particle trajec-
tory in ω̂ is uniquely determined, once there is at least one annihilation in
ω̂. But since ω̂ is constructed from ω ∈�s , then ω̂ possesses at least one
(actually infinite) annihilation points. Consequently, we can state that the
rules (i)–(iii) determine uniquely the second class particle trajectory from
ω̂.

We denote by ei(ω̂) the position of the second class particle in ω̂ at
time i ∈ 1

2 Z, and define then the mapping G on �s via

G(ω) :={ei(ω̂)}
i∈ 1

2 Z
∀ω∈�s (21)

Remark 5. Note that in the definition of G, we do not specify the
space from where ω̂ is picked, since it is sufficient for our needs that ω̂

is constructed from ω in a unique way. It is also not difficult to see that
ω is uniquely determined by ω̂, so there is neither loss no gain of infor-
mation in the passage from ω to ω̂. However, it is easier to work with ω̂

rather than with ω since in ω̂ particle annihilations occur at times when
we observe its particle positions.

Let us prove that e :=G(ω)∈E′ for any ω∈�s . To this end, first note
that since the second class particles moves with velocity either +1 or −1,
and since it may change the velocity solely at times from 1

2 Z (because an
annihilation occurs solely at a time from 1

2 Z), then e
n+ 1

2
(ω̂)− en(ω̂)=± 1

2 ,

for any n ∈ 1
2 Z, and consequently, e ≡ G(ω) ∈ E. Now, since ω ∈ �s , then

ωn ∈�s for any time n, that is, at any time n there is pair of converging
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particles that will annihilate each other in a finite time. Thus, ω and, con-
sequently, ω̂, has infinitely many annihilations after any time t . But since
rules (i)–(iii) determine that the second class particle trajectory has a kink
every time, when ω̂ has an annihilation, then G(ω)∈E′.

In the following two paragraphs shall show that

F : E′ bijectively−→ �s, G : �s
bijectively−→ E′, and G=F−1 (22)

Take arbitrarily e ∈ E′ and construct BA ω := F(e). We note that if
(et , t) is a kink in e then the particles created by this kink by the map-
ping F annihilate each other at time t at point et . Since each kink creates
exactly one pair of particles then the sets of kinks of G(ω) and of e coin-
cide. Due to the property (10), we have then that G(F(e))= e.

Take now arbitrarily a ballistic annihilation process ω from �s . By
the construction of �s , there is an annihilating companion to each particle
from ω. Due to the definition of G, each pair of annihilating companions
from ω creates a kink in G(ω), and there are no other kinks rather than
those created by annihilations in ω. Take now an arbitrary pair of anni-
hilating companions from ω and draw on the Euclidean plane (described
after Eq. (8)) the “life line” of each particle from the pair, whereas the life
line refers to the following set:

{(the particle position at time t, t)

∈R
2 : t ∈ (−∞, the particle annihilation time]} (23)

Since any particle velocity equals 1 in modulus, then the drawn life
lines emerge from the annihilation point in north-west and in north-east
directions. Thus, these lines coincide with the rays that stem from this
annihilation point and are used in the construction of the mapping F .
Consequently, F(G(ω))=ω.

The relations G(F(e))=e∀e∈E′ and F(G(ω))=ω∀ω∈�s , just proved
and the fact that E′ and �s are the domains of F and G, respectively,
altogether imply (22).

The arguments employed above to derive (22) imply easily the follow-
ing property, that says that F and G commute with time shifts:

F ◦σ (e)=σ ◦F (e) ∀e∈E′, and σ ◦G(ω)=G◦σ(ω) ∀ω∈�s (24)

where σ in the l.h.s. of each equality shifts E′ according to (11), while σ

in the r.h.s. of each shifts �s according to the follows definition:

(σ (ω))n :=ωn−1 ∀n∈Z, ω∈�s (25)
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Let us denote by Dσ the set of measures on �s that are invariant with
respect to σ defined in (25). Recall that Eσ consists of the measures on E′
that are invariant with respect to σ defined in (11). For a measure ε ∈Eσ

let F ∗(ε) denote the measure on �s such that F ∗(ε) (U) := ε
(
F−1(U)

) ≡
ε (G(U)), for all U ⊂�s . The definitions of Dσ , Eσ and the relations (22)
and (24) imply that

F ∗ : Eσ
bijectively−→ Dσ (26)

Since �s consists of (particular) trajectories of BA process, then each
element D from Dσ may be interpreted as a distribution of a discrete time
stochastic process, whose state space is {−1,0,1}Z. Using this interpreta-
tion, we define H ∗(D) as the marginal distribution at time 0 of D. Since,
by the definition, D is invariant with respect to shift σ then all its marg-
inals are identical. But then since for any ω ∈ �s the definitions (20) of
�s guarantees that ωn+1 =Aωn, then H ∗(D)∈ IBA, i.e., H ∗(D) is invariant
for BA. On the other hand, the condition ωn ∈�s in the same definition
implies that H ∗(D)∈PBA

s . Thus, H ∗ maps Dσ into PBA
s ∩IBA. Let us show

that actually,

H ∗ : Dσ
bijectively−→ PBA

s ∩ IBA (27)

To this end, let us pick an arbitrary µ∈PBA
s ∩ IBA and construct BA pro-

cess whose marginal distribution is µ at each time n ∈ Z. Since µ ∈ IBA

then D, the distribution of the constructed BA, is invariant with respect
to the shift σ . On the other hand, since µ ∈ PBA

s then µ is concentrated
on �s and thus, D is concentrated on �s . Consequently, D ∈ Dσ . By the
construction of D and H ∗, we then have that H ∗(D) = µ. Thus, (27) is
established.

The assertion (b) of Theorem 1 follows from (26), (27) just established
and the following relation

H ∗(F ∗(ε))=F ∗
0 (ε) ∀ε ∈Eσ (28)

This relation follows directly from our constructions. Indeed, F ∗
0 takes

distribution ε on the second class particle trajectories and constructs from
it F ∗

0 (ε), the distribution of BA at time 0. On the other hand, F ∗ con-
structs the distribution on the trajectories of BA that corresponds to the
distribution ε on the trajectories of the second class particle, and then, H ∗
extracts from F ∗(ε) the distribution of BA at time 0. Thus, (28) is estab-
lished and the theorem is proved.
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3.2. Characterization of Invariant Measures for CA 184

We note that although {0,1}Z may be formally seen as a subset of
{−1,0,1}Z, however, in our text, the former is interpreted as the state
space for CA 184, while the latter as that for BA.

We shall say that an η ∈ {0,1}Z has a hole at a site x ∈ Z, if η(x) =
0. We then denote by odd and even two configurations from {0,1}Z such
that odd (resp., even) has a particle (resp., a hole) at each odd i ∈Z, and
has a hole (resp., a particle) at each even i ∈Z. Using the term “consecu-
tive” defined in Section 3.1, we construct

� :={ζ ∈{−1,0,1}Z :

the distance between any consecutive particles

with the same velocity is odd and (29)

the distance between any consecutive particles

with opposite velocities is even}

We then state that T ≡ T184,BA, that has been defined in (4), satisfies the
following properties:

T : {0,1}Z \ {odd, even}→�\ {φ}⊂{−1,0,1}Z is a bijection (30)

T (odd)=T (even)=φ (31)

where φ denotes the empty configuration from {−1,0,1}Z. Properties (30)
and (31) follow straightforwardly and easily from definitions, nevertheless,
they play the central role in the derivation of Theorem 2 from Theorem 1.

For a measure µ supported by �\ {φ}, let T ∗(µ) denote the measure
on {0,1}Z such that T ∗µ(U) := µ(T U) for any U ⊆ {0,1}Z \ {odd, even}.
The properties (30) and (31) imply then that

T ∗ : {measures supported by �\ {φ}} bijectively−→
{measures supported by {0,1}Z \ {odd, even}} (32)

Let us construct (below, E′ is from (9) and Eσ has been defined after
(11))

Ẽ′ :={ e∈E′ : e cannot have kinks at non-integer times, i.e.,

e
j− 1

2
− ej = e

j+ 1
2
− ej =1 may occur only if j ∈Z} (33)

E184
σ :={ ν ∈Eσ : ν is supported by Ẽ′} (34)
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We shall show in the proof of Theorem 2 that (F ∗
0 used below was

defined in (12))

F ∗
0 : E184

σ

bijectively−→ {µ∈PBA
s ∩ IBA : µ is supported by �\ {φ}} (35)

Properties (32) and (35) guarantee that T ∗ ◦ F ∗
0 is a well defined map-

ping on the measure set E184
σ . The role of T ∗ ◦ F ∗

0 in characterization of
the invariant measures for CA 184 is the same as that of F ∗

0 for BA (see
Remark 2 and the text right before the formulation of Theorem 1).

Theorem 2. (Characterization of invariant measures for CA 184). Let
δodd and δeven denote the measures concentrated on the configuration odd

and even respectively. Let I184 denote the set of the measures that are
invariant for CA184.

(a) A measure λ on {0,1}Z is invariant for CA 184 if and only if

λ=α1λ1 +α2λ2 +α3λ3 +α4

(
δodd + δeven

2

)

(36)

for some non-negative numbers α1, α2, α3, α4, such that α1 + · · · + α4 = 1,
and for some measures λ1, λ2, λ3 from the respective sets P184

τ,particle blocks,

P184
τ,hole blocks, P184

s ∩ I184 that are described below. The expansion (36) is
unique.

(b) P184
τ,particle blocks and P184

τ,hole blocks are the sets of the measures that
are supported by, respectively, the configuration sets

{η∈{0,1}Z : no two adjacent sites of Z are empty in η} \ {odd, even}
(37)

{η∈{0,1}Z : no two adjacent sites of Z have particles in η} \ {odd, even}
(38)

and that are translation invariant, i.e., are invariant with respect to the
transformation

τ : {0,1}Z →{0,1}Z defined by (τ (η))(i)=η(i −1) ∀i ∈Z ∀η∈{0,1}Z

(39)

Informally speaking, a configuration from the set (37) (resp., (38)) consists
of blocks of particles (resp., holes) that are separated by sole holes (resp.,
particles).
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(c) P184
s consists of the measures that are concentrated on the follow-

ing configuration set:

{
η∈{0,1}Z : existsx =x(η)∈R such that no two adjacent sites of

Z to the left ofx contain particles, while no two adjacent sites of

Z to the right ofx are free of particles
}

The set P184
s does not contain translation invariant measures. The mea-

sures from P184
s that are invariant for CA 184 form the set, denoted by

P184
s ∩ I184, which is isomorphic to the measure set E184

σ by the mapping
T ∗ ◦F ∗

0 , whereas T ∗, F ∗
0 and E184

σ are from (32), (12) and (34) respectively.

Proof. Recall from (6) the construction of the configuration set �s

and note that φ �∈�s , so that we can write �s ∩� in the place of its equiv-
alent �s ∩{�\ {φ}}. Let us define

�̃s :={ω∈�s : ωn ∈�s ∩� ∀n∈Z}⊂�s (40)

Recall from the proof of Theorem 1 the construction of maps F and G.
It may be checked straightforwardly that

F : Ẽ′ bijectively−→ �̃s, G : �̃s
bijectively−→ Ẽ′, and G=F−1 on �̃s (41)

Relations (41) imply (35) by the same argument as that used in the proof
of Theorem 1 from (22) that F ∗

0 maps bijectively Eσ onto PBA
s ∩ IBA.

From Lemma 1, from (32) and the definitions of the measure sets
involved, it follows directly that

T ∗ maps bijectively {µ∈PBA
+,τ : µ supported by �} onto P184

τ,hole blocks,

{µ∈PBA
−,τ : µ supported by �} onto P184

τ,particle blocks,

(42)

{µ∈PBA
s ∩IBA : µ is supported by �} onto P184

s ∩I184

(note that neither of the sets PBA+,τ , PBA−,τ , PBA
s ∩ IBA contains the measure

δφ , so that we need not to subtract φ from �). The last line in (42) and
(35), that has been justified in the above paragraph, imply the isomor-
phism between E184

σ and P184
s ∩ I184 as stated in (c) of Theorem 2. The

proof that P184
s does not contain translation invariant measures is similar

to the proof that PBA
s does not.
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Recall that the dynamics of CA 184 has been denoted by C. Note
that C(odd)= even and C(even)=odd. Thus, a measure λ is invariant for
CA 184 if and only if it is represented uniquely as follows:

λ=γ λ′ + (1−γ )λ′′ (43)

for some γ ∈ [0,1], some measure λ′ supported by {0,1}Z \ {odd, even} and
some measure λ′′ supported by {odd, even}, whereas both λ′ and λ′′ are
invariant for CA 184.

As for λ′′, there is the unique choice for it, namely, λ′′ = (δodd +
δeven)/2; this fact is implied by the relations C(odd)=even,C(even)=odd.

Let us analyze λ′. Since λ′({odd, even}) = 0, then µ := (T ∗)−1(λ′) is
a well defined measure, that is supported by � \ {φ} (due to (32)) and is
invariant for BA (due to Lemma 1 and the use of T in the construction
of T ∗). Thus, according to Theorem 1, µ admits the expansion (13), in
which α4 =0, and each one of the measures µ1,µ2,µ3 is supported by �\
{φ}. Applying then (42), we get the expansion λ′ =α1T

∗(µ1)+α2T
∗(µ2)+

α3T
∗(µ3). Since (13) is unique and T ∗ acts bijectively then the expansion

for λ′ is unique. This and (43) imply the “only if” part of the theorem.
To prove the “if” part, assume (36) holds. From (42) and Lemma 3,

the measures λ1 and λ2 are invariant for CA 184. The measure λ3 is
invariant for CA 184, since it is picked from P184

s ∩ I184. The invariance
for CA 184 of (δodd + δeven)/2 follows straightforwardly. Thus, λ is invari-
ant for CA 184.

Remark 6. Recall that CA 184 has two “stochastic counterparts”
TASEP and CA&N that we described briefly in Section 2.1. Refs. 18 and
23 showed that the set of the non-translation invariant measures that are
invariant for TASEP and CA&N is {ν(n),−∞ < n < ∞}, where ν(n) gives
mass 1 to the configuration η(n) such that η(n)(x)=1∀x �n and η(n)(x)=
0∀x <n. We thus, remark that P184

s ∩ I184 is wider than this set.

4. HYDRODYNAMIC LIMIT

In this and the following sections, we shall consider processes indexed
by the time set N rather than Z, since the questions to be addressed con-
cern the long time behavior of processes starting from particular distribu-
tions, and require, thus, the “starting time” would be settled down; it is
n=0.

Let, as usual, C[a, b] denote the space of continuous real valued func-
tions on [a, b], and let C :=C(−∞,+∞). Let then
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C̃ :={f ∈C : f (n)∈Z∀n∈Z,

and f is linear between any two adjacent integer abscissae}
(44)

We say that f ∈ C̃ is an integrated profile for particle configuration ζ ∈
{−1,0,1}Z (i.e., for BA particle configuration), if

f (n)−f (n−1)= ζ(n) ∀n∈Z (45)

and we say that f ∈ R (the space R has been defined in Section 2.3) is
an integrated profile for particle configuration η ∈ {0,1}Z (i.e., for CA 184
particle configuration), if (compare to (5))

(1−f (n)+f (n−1))/2=η(n) ∀n∈Z (46)

Certainly, there is no a loss of information in representing a particle
configuration by an integrated profile, while a gain is that it allows one
to formalize and treat the problem of the following nature: if in a BA or
CA 184 process {ζn, n ∈ N} the particle positions at time n are re-scaled
by some factor a−1

n , would the re-scaled particle distributions converge to
some limit and what would be its properties? For this question to make
sense, it is necessary that all the re-scaled profiles be put in the same space.
The easiest way to achieve this is to represent them by integrated profiles,
since all those are from the same space C. In terms of integrated profiles,
this problem reads: Do there exist, for every n ∈ N, two real numbers cn

and an and a function fn(·) such that fn(·) is an integrated profile for ζn

and cnfn(an·) converges to a limit, as n → ∞? The limit in question is
called hydrodynamic limit (a general treatment of hydrodynamic limits for
particle systems is given in book 14). It is described in Theorems 3 and
4 for respectively, BA and CA 184.

Note that for any particle configurations, all its integrated profiles
form a class such that any function from this class may be obtained from
another one by a vertical shift. As far as particle positions are concerned,
any function from the corresponding class bears the same information,
and thus, it is natural that the question that concerns hydrodynamic limit
does not impose conditions on exactly which representative from each
class should be chosen as fn(·). To pick the “right” representative is as
important for a success in establishing hydrodynamic limit as to find the
correct scaling factors cn and an. Also, it is important for the success that
integrated profile be appropriately constructed. Note in respect, that there
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are infinite ways to present a particle configuration by a profile; for exam-
ple, the rule (45) might be an alternative to (46) for constructing integrated
profile for CA 184 particles. With (45) in the place of (46), however, the
counterpart of Theorem 4 would not follow from Theorem 3 as easily and
cleanly as it does.

We draw the reader attention to the fact that the process’ convergence
discussed everywhere below is understood as the weak convergence of pro-
cess’ distributions on C[a, b] for any −∞<a <b<+∞ (see ref. 3).

Theorem 3. For y � 0, let My denote the operator that brings a
function f (·) : R→R to the function g(·) : R→R in the way such that

g(x)= (
Myf

)
(x)=min{f (z) : x −y � z�x +y} ∀x ∈R (47)

(a) If a random function f0(·)∈ C̃ is an integrated profile, in the sense
of (45), of a random configuration ζ0 ∈{−1,0,1}Z then, for any n∈N, the
function

fn(·) := (
Mn

1 f0
)
(·)= (Mnf0) (·) (48)

is an integrated profile, in the sense of (45), for ζn := Anζ0, the particle
configuration at time n in BA that starts from ζ0.

(b) (Hydrodynamic limit for BA.) Let ζ0 and f0(·) be as in item (a)
and suppose that there exist a sequence of real numbers {cn, n∈N} and a
stochastic process W(t), t ∈R, whose trajectories belong to C, such that

cnf0(n·)→W(·) as n→∞ (49)

then Eq. (48) defines the sequence {fn(·), n ∈ N} of integrated profiles of
BA {Anζ0, n∈N} that satisfies the following hydrodynamic limit relation:

cnfn(n·)→ (M1W)(·) as n→∞ (50)

Note that the process (M1W)(·) may be called the moving local mini-
mum of the process W(·), since its value at each “time” t is the minimum
of the values of W(·) in the “time window” of length 1 centered at t .

Theorem 3 has been established in ref. 1 for a particular case when ζ0,
an and cn are such that the process W(·) is the standard Brownian motion
(naturally, ζ0 is a Bernoulli product measure on {−1,+1}Z, and cn =n−1/2,
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an =n). The objective of (1) was to establish the distribution of the mov-
ing local minimum of the Brownian motion. To this end, the distribution
of fn(·) was calculated and then, the limit distribution of n−1/2fn(n·) was
found. According to (50), the found law is the desired law of the moving
local minimum of Brownian motion. Thus, the work(1) illustrates that The-
orem 3 may be applied to derive a process distribution via considering an
appropriate BA or CA 184 process. Note that this theorem may be also
used in the “opposite” direction: if one knows that (49) holds for some
known process W(·) and numeric sequence cn, then one may use (M1W)(·)
and (50) in order to get an approximate shape of fn(·), and consequently,
an approximate charge of particles in BA at time n in any interval [a, b]
(via the obvious relation: fn(b)−fn(a −1)=∑b

i=a ζn(i)=#(positive parti-
cles) - #(negative particles) at time n in [a, b]).

Proof of Theorem 3. Let ζ0 ∈ {−1,0,+1}Z be arbitrary and let
f0(·) be its integrated profile (any one from the class of the integrated
profiles of ζ0). The fact that (M1f0)(·) is an integrated profile for the
configuration Aζ0 follows by a straightforward verification (see Fig. 1 for
an illustration). To complete the proof of (a) we thus, only have to estab-
lish that Mn

1 =Mn for any n. But this fact follows directly from the defini-
tion (47) of My .

Let us now prove (b). First, we note that for any function h : R→R,
the modulus of continuity (which definition one finds in ref. 3) of M1h

does not exceed that of h; this property of M1 can be verified straight-
forwardly. This fact allows us to apply Theorem 5.1 from ref. 3 to the
assumption cnf0(n·)→W(·) to conclude that

(M1
(
cnf0(n·)))(·)→ (

M1W
)
(·) (51)

We must comment on the use of two “·” in (51) in order to avoid a pos-
sible confusion in its interpretation: (M1(cnf0(n·)))(·) means the function
obtained by rescaling f0 by cn along the axis of ordinates and by n−1

along the axis of abscissa, and then, by applying M1. It may be verified
directly that for any continuous function h and any constant c,

(M1(ch(n·)))(x)= c
(
Mnh

)
(nx) ∀x ∈R

Thus, the l.h.s. of (51) is equal to cn(Mnf0)(n·), which in turn, is equal to
cnfn(n·), according to the choice of fn. Thus, (50) follows from (51), and
the theorem is proved.
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Theorem 4. (Hydrodynamic limit for CA 184). Assume that a ran-
dom function g0(·)∈R is an integrated profile, in the sense of (46), of a
random configuration η0 ∈ {0,1}Z, and that there exist a sequence of real
numbers {cn, n∈N} and a stochastic process W(t), t ∈R, whose trajectories
belong to C, such that

cn →0 as n→∞ (see Remark 7 for the role of this assumption)

(52)

cng0(n·)→W(·) as n→∞ (53)

For each n∈N, let ηn :=Cnη0 denote the particle configuration in CA 184
at time n, starting from η0, and let gn(·) be the integrated profile, in the
sense of (46), of ηn such that

gn(0)=Mng0(0) (54)

Then,

cngn(n·)→M1W(·) as n→∞ (55)

Remark 7. The cornerstone of the proof is the property (56) that
says that integrated profiles of a BA particle configuration and a CA 184
particle configuration go hand in hand, if they have a common point and
if the configurations are related via T184,BA from (4). Conditions (52) and
(54) assure then that BA and CA 184 must have the same hydrodynamic
limit, if their initial states are related via T184,BA.

Proof. Let T := T184,BA be the mapping defined in (4), let ζ ∈
{−1,0,1}Z and η ∈ {0,1}Z be arbitrary but such that T η = ζ , and let f (·)
and g(·) be integrated profiles of ζ and η, respectively (in the sense of (45)
and (46), respectively). It may be verified straightforwardly (Fig. 1 might
be to hand here) that

if g(0)=f (0) then |f (x)−g(x)|�1 ∀x ∈R (56)

We introduce ζ0 :=T η0 and we denote by f0(·) the integrated profile
of ζ0 such that f0(0) = g0(0). The latter equality and the relations (56),
(52) and (53) imply the relation (49), which due to Theorem 3, implies that
cnfn(n·) → (M1W)(·), if fn(·) is defined by (48) for each n ∈ N. The lat-
ter convergence and the relations (56) and (52) would imply the theorem
statement (55), if we had that
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for some constant c′, |gn(0)−fn(0)|� c′ uniformly in n (57)

There are various conditions, not necessarily equivalent among them-
selves, that imply (57). One of them is the condition (54). Indeed, from
our construction of g0(·) and f0(·) and from (56), we can conclude that
|Mng0(x)−Mnf0(x)|�1, ∀x. On the other hand, |gn(x)−fn(x)|� |gn(0)−
fn(0)|+1, ∀x, because of (56), which applies to the case, since ζn ≡Anζ0 =
T ηn ≡T (Cnη0), as Lemma 1 assures. Combining the obtained inequalities
with the condition (54) and the identity Mnf0 =fn, we get (57). Thus, the
proof is completed.

Theorem 5. (Limit shape of functions in SG under a hydrodynamic
scaling). Let h0(·)∈R be a random function, and {cn, n∈N} be a sequence
of real numbers such that

cn →0 as n→∞ (58)

cnh0(n·)→W(·) as n→∞ (59)

for some stochastic process W(t), t ∈ R, whose trajectories belong to C.
Let {hn(·), n ∈ N} be SG process starting from h0(·). Then, there exists a
sequence of random variables {αn, n∈N} such that

cn(hn(n·)+αn)→M1W(·) as n→∞ (60)

Proof. We construct η0 ∈ {0,1}Z via η0(n) := (1 − h0(n) + h0(n −
1))/2∀n∈ Z. By (46), h0 is an integrated profile for η0, and thus, putting
g0 :=h0, we conclude that the conditions (52) and (53) of Theorem 4 are
satisfied, and consequently, cngn(n·)→M1W(·), where gn(·) is an appropri-
ate integrated profile of ηn :=Cnη0. But Lemma 2 implies that hn(·) is also
an integrated profile for ηn, so that gn(·) − hn(·) = αn for an appropriate
random variable αn. Thus, (60) follows.

5. CONVERGENCE TO EQUILIBRIUM

5.1. The Domains of Attraction of Invariant Measures

The domains of attraction of invariant measures of BA are analyzed
in Theorem 6 below. Its counterparts for CA 184 and SG may be derived
in the manner analogous to the derivation of Theorem 2 from Theorem 1,
employing the relations between the processes that have been established in
Lemmas 1 and 2.
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Theorem 6. (Domain of attraction for invariant measures of BA).

(a) Let µ be any translation invariant measure on {−1,0,+1}Z.
Then BA, starting from µ, converges to some measure from the set PBA−,τ ∪
PBA+,τ ∪ δφ .

(b) There exist measures from PBA
s such that BA starting from any

one of them, does not converge to any measure on {−1,0,+1}Z.

Proof of Theorem 6(a). Let ζ be an arbitrary configuration of
A-particles. Let us mark “condemned” each its particle that will be anni-
hilated in BA staring from ζ . This may be achieved by repeating the
following procedure: mark all converging pairs in ζ and remove them,
mark all converging pairs of the remained particles and remove them, and
so on. Let ζ̄ denote the configuration obtained from ζ by eliminating all
its condemned particles. According to this procedure, ζ̄ ∈�+ ∪�− ∪{φ}∪
�diverging, where �+,�− and φ have been defined in the formulation of
Theorem 1 while

�diverging : = {ζ ∈{−1,0,1}Z : exists x ∈R such that all positive

(resp., negative) particles are situated to

the right (resp., left) of x} (61)

Let us denote by µ̄ the measure obtained from µ via the transfor-
mation ζ → ζ̄ of each ζ from the support of µ, namely, for each cylinder
set U ⊂{−1,0,+1}Z, we set µ̄(U) :=µ(ζ : ζ̄ ∈U). Note that µ̄ is transla-
tion invariant, since both µ and the dynamics of BA were. On the other
hand, as we have just established, µ̄ must be supported by �+ ∪ �− ∪
{φ} ∪ �diverging. However, employing the argument that has been used in
the proof of Theorem 1 to show that PBA

s does not contain translation
invariant measures, it is easy to derive that a translation invariant measure
cannot be supported by �diverging. Thus µ̄ is supported by �+ ∪�− ∪{φ}.
Now, since the dynamics of BA does not mix these sets (as we have shown
in the “Continuation of the proof of Theorem 1(a)”) then µ̄ is a con-
vex combination of three measures, all translation invariant, that are sup-
ported by respectively, �+, �− and {φ}. Thus, Theorem 1 implies that µ̄

is invariant for BA.
Let (A∗)nµ denote the distribution at time n of BA when the initial

distribution is µ. We want to show that (A∗)nµ→ µ̄, as n→∞, which is
equivalent to showing that (A∗)nµ→ (A∗)nµ̄, as n→∞, since µ̄ is invari-
ant for BA. To establish the desired result, we fix arbitrarily a finite region
{i, i +1, . . . , j}, i, j ∈Z, and consider the variational distance between the
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distributions of particles in this region that are determined by (A∗)nµ and
(A∗)nµ̄. Since for any ζ and any n, the configuration of non-condemned
particles of Anζ coincides with the configuration Anζ̄ , then the considered
variational distance is equal to

µ
[
there is at least one condemned particle of ζ

in {i, i +1, . . . , j} at time n
]

(62)

But if a particle of Anζ is in {i, i + 1, . . . , j} then its position in ζ

belongs to either {i −n, i +1−n, . . . , j −n} or to {i +n, i +1+n, . . . , j +n}.
Thus, since µ is translation invariant, then (62) is not larger than 2(1 −
h

µ
j−i (n)), where

h
µ
k (n) : = µ

[
all the condemned particles of ζ in the region

{�+1, . . . , �+k} will have died by time n in BA,

starting from ζ
]
, �∈Z, k ∈N, n∈N (63)

(hµ
k (n) does not depend on � since µ is translation invariant). However,

since each condemned particle dies sooner or later then

h
µ
k (n)↗1 as n→∞ for any fixed k (64)

Thus, (62) decreases to 0 as n→∞, which in turn, implies the convergence
of (A∗)nµ to µ̄. This completes the proof of item (a).

Proof of Theorem 6(b). It is enough to present a configuration ζ ∈
�s such that BA, starting from ζ , does not converge to any measure. We
shall construct such ζ with aid of the second class particle defined in the
proof of Theorem 1.

Let the second class particle be at site 0 at time 0 and let its evolution
consist of excursions from 0 and oscillations around 0, in alternating
order. At the ith excursion, the second class particle starts from 0, moves
to the site −2i and comes back to 0; thus, the ith excursion duration
is 2i+1. After the second class particle comes back to 0, at the end of
ith excursion, it oscillates between 0 and 1/2 during 2i+1 + 1 time units.
Denote by e the trajectory of the second class particle. Recall the defi-
nition of operator F0 from the text right before the formulation of The-
orem 1. Let ζ := F0(e). From the definition, ζ ∈ �s . We now state that
BA, starting from ζ , does not converge to any measure. Indeed, if it were
then the second class particle position would have a limiting distribution.
But our construction of e guarantees that such a distribution does not
exist.
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5.2. Rate of Convergence

A BA process, starting from µ, is said to converge to its invari-
ant state with rate f (n) as “time” n → ∞, if the variational distance
between its particle distribution at time n and its limit particle distribu-
tion on any interval [i, j ]⊂Z may be limited by ci,j f (n) from below and
by c′

i,j f (n) from above, for some constants ci,j , c
′
i,j that do not depend on

n (clearly, f (n) here must not depend on i, j ); certainly, actual values of
the constants and the function may depend on the structure of µ. Usu-
ally, a constant factor of f (n) is of no interest, so that typically a rate of
convergence is presented as, for example, n−1/2 or (log n)−1.

As we have shown in the proof of Theorem 6 (a), if µ is trans-
lation invariant, then an upper bound for the variational distance is
2(1 − h

µ
j−i (n)). It is straightforward to see that 1/2(1 − h

µ
j−i (n)) may be

taken as its lower bound. Thus, we get the following general result: if
1−h

µ
j−i (n) behaves asymptotically (in n) as c

µ
i,j f

µ(n) then f (n) is the rate
of convergence to the equilibrium measure of BA that starts from a trans-
lation invariant measure µ. Two examples below present particular situa-
tions when ci,j f (n) may be found relatively easily.

Example 1. Let µ be Bernoulli 1/2 on {−1,+1}Z. Let pµ(n) denote
the probability that the particle from 0 has not been annihilated by time n.
Obviously, pµ(n)�1−h

µ
k (n)�kpµ(n). Let us estimate the rate of decay of

pµ(n) to 0. For this, we shall need two facts that may be verified straight-
forwardly. The first fact says that for two particles to annihilate each other
by time n, it is necessary that they are at most 2n apart one from another
at time 0. The second fact says that if m and m′ (m < m′) are the posi-
tions of a positive particle and its annihilation companion in a configura-
tion ζ , then the integrated profile (in the sense of (45)) of ζ attains the
same value at abscissas m − 1 and m′ and does not attain this value at
any other point from (m−1,m′). (This fact is illustrated on Fig. 1(a): the
annihilation companion of the +-particle at site 1 is the −-particle at site
11; accordingly, the integrated profile passes through 0 at 0 and returns
to 0 for the first time, at 11.) But if the A-particles are distributed by µ

then their integrated profile is a simple symmetric (one-dimensional) ran-
dom walk. Using then classical results for this random walk (see ref. 11,
Ch. 3), we get that, pµ(n)=Cu2n for some absolute constant C, where u2n

is the probability that this walk returns to the origin at time 2n. Again
from ref. 11, Ch. 3, u2n ∼ const × n−1/2, which implies that BA, starting
from µ, converges to its invariant state (which may be shown to be δφ) at
the rate t ime−1/2.

Example 2. CA 184, starting from Bernoulli 1/2 distribution, con-
verges to the distribution 1/2(δo + δe) at the rate t ime−1/2. This fact is



Invariant Measures and Convergence Properties 619

obtained via mapping of CA 184 to BA and adapting to this process
the argument from Example 1. Note that a certain adaptation is needed
because the integrated profile in this case is not a simple random walk. All
the details in respect may be found in work(13). This work studied a so-
called one-dimensional three-color cyclic cellular automaton. To show that
this automaton converges to its invariant state at the rate t ime−1/2, when
starts from a particular distribution, the author maps it into BA. The ini-
tial distribution of the resulting BA is exactly the same as if it would have
been obtained via T184,BA from CA 184 that starts from Bernoulli 1/2 dis-
tribution.

5.3. An Application: The Long Time Limit of the Current

of Particles in CA184

In this section, we define current of particles in CA 184, and show
(Theorem 7) how it is calculated from parameters of initial measure of
CA 184 in the case when this measure is translation invariant. In general,
the particle current is of an interest, when CA 184 is used to model vehic-
ular traffic. In particular, the ideas from Theorem 7 and its proof have
been employed in ref. 2.

Let λ be a translation invariant measure on {0,1}Z. The current (or
flux) of particles at time n in CA 184 {ηk}k∈N starting from λ, is defined
as

Jn(λ) :=λ{ηn(1)(1−ηn−1(1))}=λ{ηn−1(0)(1−ηn−1(1))} (65)

It expresses the expected number of particles that pass at time n through
an observer put at the point 1/2; note that with this interpretation in
mind, the justification of the last equality in (65) is straightforward. We
shall be interested solely in the case when λ is translation invariant, so
that the current does not depend on the observation point. When λ is also
invariant for CA184 we shall write J (λ) instead of Jn(λ), since in this case
the current does not depend on time. By

ρ(λ) :=λ{η(0)} (66)

we shall denote the particle density of a translation invariant measure λ.
Besides the terms and notations just defined, Theorem 7 below will use the
notations from Theorem 2.

Theorem 7. (a) (Particle current in CA184 distributed by its invari-
ant measure that is transl. invariant.)
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Let λ be a translation invariant measure on {0,1}Z and let it be invariant
for CA 184. Then

J (λ)=





ρ(λ), if λ∈P184
τ,hole blocks

1−ρ(λ), if λ∈P184
τ,particle blocks

1/2, if λ= (δeven + δodd)/2
(67)

If λ is none of the cases from (67) then

J (λ)=α1(1−ρ(λ1))+α2ρ(λ2)+ 1
2
α4 (68)

where α1, α2, α4 and λ1 and λ2 are from expansion (36) from Theorem 2.
(b) (Long time limit of particle current in CA 184 starting from

transl. invariant measure.) Let λ be any translation invariant measure on
{0,1}Z. Consider its expansion as a convex combination of ergodic trans-
lation invariant measures on {0;1}Z. Define then λ<1/2 (respectively, λ>1/2

and λ1/2) as the mixture, with the respective weights proportional to the
original weights in the expansion of λ, of those of the measures from the
expansion whose particle density is < 1/2 (respectively, > 1/2 and = 1/2);
let then α,β and γ be such that λ = αλ<1/2 + βλ>1/2 + γ λ1/2. Then the
long time limit of the particle current in CA 184, starting from λ exists
and is given by

J∞(λ) := lim
n→∞Jn(λ)=αρ(λ<1/2)+β(1−ρ(λ>1/2))+γ

1
2

(69)

Remark 8. As an example, let λ=ν/2+µ/2 where ν and µ are two
Bernoulli measures with respective particle densities 1/6 and 4/6. Note
that a Bernoulli measure on {0;1}Z is not invariant for CA 184. But since
it is ergodic with respect to translation of Z, then, from Theorem 7(b), we
can conclude that the limit particle current in CA 184, starting from λ, is
1/2[1/6 + (1 − 4/6)] = 1/4. Note that the latter is different from the parti-
cle density in CA 184 that is equal to 1/2(1/6+4/6)=5/12 at any (!) time
(because particle neither appear nor disappear in CA 184).

The above example shows that in general, the particle density alone
does not determine the particle current. There are however, two cases
when it does. First, when λ is either (δeven + δodd)/2 or belongs to
P184

τ,hole blocks or to P184
τ,particle blocks; this case is covered by assertion (a) of

Theorem 7. The second case is when λ is ergodic; this case gave raise to
assertion (b). The role of the ergodicity of a measure in determining the
particle current will be clarified in Remark 9.
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Proof of (a). Consider first the case when either λ∈P184
τ,hole blocks or

λ= (δeven + δodd)/2. Due to the definitions of P184
τ,hole blocks, of δeven and of

δodd given in Theorem 2, such λ is supported by configurations in which
particles cannot occupy adjacent sites, and thus, λ{ηn(i) = 0

∣
∣ηn(i − 1) =

1}= 1∀i ∀n. This fact together with (65) and (66) imply that J (λ)=ρ(λ).
Consider now the case when λ∈P184

τ,hole blocks. The definition (65) allows us
to interpret J (λ) as the expected number of holes that pass leftwards. Note
that the rules of interactions of holes in CA 184 is the same as those of
its particles (with the only difference that the drift directions are opposite).
This fact allows us to adapt to the present case the argument of the above
case, and to conclude that the current of holes in the leftward direction is
equal to the density of holes. Since the latter is 1−ρ(λ) then (67) is estab-
lished.

The second statement in (a) follows from the first one, from Theo-
rem 2 and from additivity of the particle current by which we mean the
following property: if λ=αµ+ (1−α)ν for some α ∈ [0;1] and some mea-
sures µ and ν, then Jn(λ)=αJn(µ)+ (1−α)Jn(ν).

Let us prove (b). Pick arbitrarily s ∈ (0;1/2) and consider an ergodic
translation invariant measure λs with the particle density equal to s. Since
it is ergodic then

n−1 lim
n→∞

n∑

i=0

η(i)=ρ(λs)= s λs-a.s. (70)

Consider CA 184 that starts from λs and denote by λ∞
s the limit distri-

bution of this CA 184. Recall that Theorem 6(a) states that if BA starts
from some translation invariant measure then it necessarily converges to
a translation invariant measure that is invariant for its dynamics. Using
the relation between BA and CA 184 given in Lemma 1 it is easy to
deduce from this result that the same is true for CA 184 (this deduction is
achieved exactly in the same manner as Theorem 2 has been deduced from
Theorem 1). Thus, λ∞

s indeed exists, is translation invariant and invariant
for CA 184.

Note now that CA 184 neither kills nor creates particles. Combining
this fact with (70) we get that the particle density of each configuration in
the support of λ∞

s is s.

Remark 9. It is here that we employ essentially the ergodicity of λs .
It allows us to ensure that all the particle configurations have the same
particle density. Otherwise, the particle density might have no relation to
the current (as in the example from Remark 8), that would invalidate the
argument below.
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Since λ∞
s is translation invariant and invariant for CA 184, then, due

to Theorem 2, it belongs to P184
τ,hole blocks. By Theorem 7(a), then J (λ∞

s )=
ρ(λ∞

s ), which is equal ρ(λs), since, as we have noted, CA 184 neither kills
nor creates particles. Thus, limn→∞ Jn(λs)=ρ(λs).

Repeating the above argument, with obvious modifications, we get
that limn→∞ Jn(λs)=1−ρ(λs) if s >1/2 and is 1/2 if s =1/2.

Pick now an arbitrary translation invariant measure λ. Consider its
expansion as a convex combination of ergodic measures: λ = ∑

e∈E p(e)

λ(e); here E is an index set, each λ(e) is an ergodic measure and p(e) is
its weight. From the conclusions just derived we have that

lim
n→∞Jn(λ) =

∑

e∈E
lim

n→∞p(e)Jn(λ(e))=
∑

e∈E :ρ(λ(e))<1/2

p(e)ρ(λ(e))

+
∑

e∈E :ρ(λ(e))>1/2

p(e)(1−ρ(λ(e)))+
∑

e∈E :ρ(λ(e)=1/2

p(e)/2

from which the assertion (b) follows.
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